Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(3): 3696-3706, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38091222

RESUMO

Intercropping crops with hyperaccumulators is a proven model for coupling crop safety production and soil heavy metal remediation. And both crop genotypes and soil properties might have great impacts on the effect of intercropping. Therefore, a greenhouse pot experiment was designed to investigate the effects of intercropping different tomato varieties with the cadmium (Cd) hyperaccumulator Sedum alfredii Hance (S. alfredii Hance) on different soils. The results showed that intercropping promoted Cd uptake by S. alfredii Hance and reduced soil total Cd concentration. There was no significant effect of intercropping on tomato yield and Cd concentration. Different tomato varieties had different effects on tomato yield and Cd concentration. The yield of cherry tomato was 1.04 times higher than that of common large fruit tomato, while the Cd concentration in all parts was lower than that of common large fruit tomato. Different typical zonal soils had different effects on tomato production and soil remediation. And among the four studied soils, tomatoes grown on ZJ soil had the highest yields and lowest fruit Cd concentration, making them more suitable for remediation coupled with safety production. This study provided a comprehensive analysis of tomato production benefits and soil remediation effects, which could be useful as a guide in vegetable safety production coupled with soil remediation practices in the Cd-contaminated greenhouse.


Assuntos
Sedum , Poluentes do Solo , Solanum lycopersicum , Cádmio/análise , Solo , Poluentes do Solo/análise , Biodegradação Ambiental , Produção Agrícola
2.
Sci Total Environ ; 895: 165158, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37385511

RESUMO

Surface urban heat island (SUHI) is a key climate risk associated with urbanization. Previous case studies have suggested that precipitation (water), radiation (energy), and vegetation have important effects on urban warming, but there is a lack of research that combines these factors to explain the global geographic variation in SUHI intensity (SUHII). Here, we utilize remotely sensed and gridded datasets to propose a new water-energy-vegetation nexus concept that explains the global geographic variation of SUHII across four climate zones and seven major regions. We found that SUHII and its frequency increase from arid zones (0.36 ± 0.15 °C) to humid zones (2.28 ± 0.10 °C), but become weaker in the extreme humid zones (2.18 ± 0.15 °C). We revealed that from semi-arid/humid to humid zones, high precipitation is often coupled with high incoming solar radiation. The increased solar radiation can directly enhance the energy in the area, leading to higher SUHII and its frequency. Although solar radiation is high in arid zones (mainly in West, Central, and South Asia), water limitation leads to sparse natural vegetation, suppressing the cooling effect in rural areas and resulting in lower SUHII. In extreme humid regions (mainly in tropical areas), incoming solar radiation tends to flatten out, which, coupled with increased vegetation as hydrothermal conditions become more favorable, leads to more latent heat and reduces the intensity of SUHI. Overall, this study offers empirical evidence that the water-energy-vegetation nexus highly explains the global geographic variation of SUHII. The results can be used by urban planners seeking optimal SUHI mitigation strategies and for climate change modeling work.

3.
Glob Chang Biol ; 28(21): 6404-6418, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35971257

RESUMO

Soil moisture (SM) is essential to microbial nitrogen (N)-cycling networks in terrestrial ecosystems. Studies have found that SM-atmosphere feedbacks dominate the changes in land carbon fluxes. However, the influence of SM-atmosphere feedbacks on the N fluxes changes, and the underlying mechanisms remain highly unsure, leading to uncertainties in climate projections. To fill this gap, we used in situ observation coupled with gridded and remote sensing data to analyze N2 O fluxes emissions globally. Here, we investigated the synergistic effects of temperature, hydroclimate on global N2 O fluxes, as the result of SM-atmosphere feedback impact on N fluxes. We found that SM-temperature feedback dominates land N2 O emissions by controlling the balance between nitrifier and denitrifier genes. The mechanism is that atmospheric water demand increases with temperature and thereby reduces SM, which increases the dominant N2 O production nitrifier (containing amoA AOB gene) and decreases the N2 O consumption denitrifier (containing the nosZ gene), consequently will potential increasing N2 O emissions. However, we find that the spatial variations of soil-water availability as a result of the nonlinear response of SM to vapor pressure deficit caused by temperature are some of the greatest challenges in predicting future N2 O emissions. Our data-driven assessment deepens the understanding of the impact of SM-atmosphere interactions on the soil N cycle, which remains uncertain in earth system models. We suggest that the model needs to account for feedback between SM and atmospheric temperature when estimating the response of the N2 O emissions to climatic change globally, as well as when conducting field-scale investigations of the response of the ecosystem to warming.


Assuntos
Nitrificação , Solo , Atmosfera , Carbono , Desnitrificação , Ecossistema , Retroalimentação , Nitrogênio , Óxido Nitroso/análise , Água
4.
Toxics ; 11(1)2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36668753

RESUMO

With the rapid development of industry, chromium (Cr) pollutants accumulate constantly in the soil, causing severe soil Cr pollution problems. Farmland Cr pollution hurts the safety of agricultural production and indirectly affects human health and safety. However, the current situation of Cr pollution in farmland soil and crops has not been detailed enough. In this study, the evaluation of Cr potential risk in soil-crop systems was conducted in a rural area that was affected by industry and historic sewage irrigation. Ten different crops and rhizosphere soils were sampled from four fields. The results showed that Cr contents in farmland soil exceeded the national standard threshold in China (>21.85%), and the Cr content in edible parts of some agricultural products exceeded that too. According to the PCA and relation analysis, the Cr accumulation in edible parts showed a significant correlation with soil Cr contents and available potassium contents. Except for water spinach, the target hazard quotient (THQ) of the other crops was lower than 1.0 but the carcinogenic health risks all exceeded the limits. The carcinogenic risks (CR) of different types of crops are food crops > legume crops > leafy vegetable crops and root-tuber crops. A comprehensive assessment revealed that planting water spinach in this area had the highest potential risk of Cr pollution. This study provided a scientific and reliable approach by integrating soil environmental quality and agricultural product security, which helps evaluate the potential risk of Cr in arable land more efficiently and lays technical guidelines for local agricultural production safety.

5.
Sci Rep ; 10(1): 11063, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32632136

RESUMO

Biochar-based controlled release nitrogen fertilizers (BCRNFs) have received increasing attention due to their ability to improve nitrogen-use efficiency (NUE) and increase crop yields. We previously developed a novel BCRNF, but its effects on soil microbes, NUE, and crop yields have not been reported. Therefore, we designed a pot experiment with five randomised treatments: CK (without urea and biochar), B (addition biochar without urea), B + U (biochar mixed urea), Urea (addition urea without biochar), and BCRNF (addition BCRNF), to investigate the effects of BCRNF on nitrifiers and denitrifiers, and how these impact nitrogen supply and NUE. Results of high-throughput sequencing revealed bacterial community groups with higher nutrient metabolic cycling ability under BCRNF treatment during harvest stage. Compared to Urea treatment, BCRNF treatment stimulated nitrification by increasing the copy number of the bacterial amoA gene and reducing nitrous oxide emission by limiting the abundance of nirS and nirK. Eventually, BCRNF successfully enhanced the yield (~ 16.6%) and NUE (~ 58.79%) of rape by slowly releasing N and modulating the abundance of functional microbes through increased soil nitrification and reduced denitrification, as compared with Urea treatment. BCRNF significantly improved soil NO3-, leading to an increase in N uptake by rape and NUE, thereby promoting rape growth and increasing grain yield.


Assuntos
Brassica napus/crescimento & desenvolvimento , Brassica napus/metabolismo , Fertilizantes , Nitrogênio/administração & dosagem , Nitrogênio/metabolismo , Disponibilidade Biológica , Biomassa , Carvão Vegetal/administração & dosagem , Carvão Vegetal/química , Preparações de Ação Retardada , Fertilizantes/análise , Fluoresceínas/metabolismo , Nitrificação , Solo/química , Microbiologia do Solo , Urease/metabolismo
6.
Sci Rep ; 9(1): 9548, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31266988

RESUMO

Biochar-based fertilizers have attracted increased attention, because biochar can improve the soil fertility, promote plant growth and crop yield. However, biochar-based controlled release nitrogen fertilizers (BCRNFs) still face problems because of the high cost, inefficient production technology, instability of nitrides, and the challenge associated with the controlled release of nutrients. In this study, we hydrothermally synthesised novel BCRNFs using urea-loaded biochar, bentonite and polyvinyl alcohol for controlled release of nutrients. Scanning electron microscopy and gas adsorption were conducted to identify the urea-loading and storage of bentonite in the inner pores of the biochar particles. X-ray diffraction, Fourier transform infrared spectroscopic and X-ray photoelectron spectroscopic studies demonstrated that strengthening the interactions among biochar, urea, and bentonite, helps control the moisture diffusion and penetration of bentonite, thereby leading to nutrient retention. The BCRNF showed significantly improved nutrient release characteristic compared with that of a mixture of biochar and urea. This urea-bentonite composite loaded with urea provides control over the release of nutrients stored in the biochar. BCRNF, especially those produced hydrothermally, can have potential applications in sustainable food security and green agriculture.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...